Growth differentiation factor 11 mitigates cardiac radiotoxicity via activating AMPKα

生长分化因子 11 通过激活 AMPKα 减轻心脏放射毒性

阅读:6
作者:Xia Li, Dong Ding, Wei Chen, Yu Liu, Haisong Pan, Jun Hu

Abstract

Cardiac radiotoxicity largely impedes the therapeutic benefits of radiotherapy to malignancies. Growth differentiation factor 11 (GDF11) is implicated in the pathogenesis of cardiac diseases under different pathological conditions. This study aims to investigate the role and underlying mechanisms of GDF11 on cardiac radiotoxicity. Mice were injected with cardiotropic adeno-associated virus 9 carrying the full-length mouse GDF11 gene or negative control under a cTnT promoter from the tail vein, and then received a single dose of 20 Gray (Gy) whole-heart irradiation (WHI) for 16 weeks to imitate cardiac radiotoxicity. Compound C (CC, 20 mg/kg) was intraperitoneally injected every two days at 1 week before WHI stimulation to inhibit 5' AMP-activated protein kinase α (AMPKα). Cardiac GDF11 expression was significantly suppressed at both the protein and mRNA levels. GDF11 overexpression decreased oxidative stress, apoptosis, and fibrosis in radiated hearts, thereby mitigating cardiac radiotoxicity, and dysfunction. Further detection revealed that GDF11 activated AMPKα to reduce radiation-induced oxidative damage and that AMPKα inhibition by CC offset the cardioprotective effects by GDF11. GDF11 mitigates cardiac radiotoxicity via activating AMPKα and it is a promising candidate to treat cardiac radiotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。