Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice

肠道形态和微生物群的明显改变是非肥胖糖尿病小鼠加速糖尿病发作的特征

阅读:5
作者:Marie-Christine Simon, Anna Lena Reinbeck, Corinna Wessel, Julia Heindirk, Tomas Jelenik, Kirti Kaul, Juan Arreguin-Cano, Alexander Strom, Michael Blaut, Fredrik Bäckhed, Volker Burkart, Michael Roden

Abstract

The rising prevalence of type 1 diabetes (T1D) over the past decades has been linked to lifestyle changes, but the underlying mechanisms are largely unknown. Recent findings point to gut-associated mechanisms in the control of T1D pathogenesis. In nonobese diabetic (NOD) mice, a model of T1D, diabetes development accelerates after deletion of the Toll-like receptor 4 (TLR4). We hypothesized that altered intestinal functions contribute to metabolic alterations, which favor accelerated diabetes development in TLR4-deficient (TLR4-/-) NOD mice. In 70-90-day-old normoglycemic (prediabetic) female NOD TLR4+/+ and NOD TLR4-/- mice, gut morphology and microbiome composition were analyzed. Parameters of lipid metabolism, glucose homeostasis, and mitochondrial respiratory activity were measured in vivo and ex vivo Compared with NOD TLR4+/+ mice, NOD TLR4-/- animals showed lower muscle mass of the small intestine, higher abundance of Bacteroidetes, and lower Firmicutes in the large intestine, along with lower levels of circulating short-chain fatty acids (SCFA). These changes are associated with higher body weight, hyperlipidemia, and severe insulin and glucose intolerance, all occurring before the onset of diabetes. These mice also exhibited insulin resistance-related abnormalities of energy metabolism, such as lower total respiratory exchange rates and higher hepatic oxidative capacity. Distinct alterations of gut morphology and microbiota composition associated with reduction of circulating SCFA may contribute to metabolic disorders promoting the progression of insulin-deficient diabetes/T1D development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。