Modulation of SIRT1 expression improves erectile function in aged rats

调节 SIRT1 表达可改善老年大鼠的勃起功能

阅读:5
作者:Wen Yu, Jing Wang, Yu-Tian Dai, Bin Wang, Yang Xu, Qing-Qiang Gao, Zhi-Peng Xu

Abstract

Silent information regulator 2-related enzyme 1 (SIRT1) is an aging-related protein activated with aging. Herein, we evaluated the role of SIRT1 in aging-related erectile dysfunction. The expression of SIRT1 was modulated in aged Sprague-Dawley rats following intragastric administration of resveratrol (Res; 5 mg kg-1), niacinamide (NAM; 500 mg kg-1) or Res (5 mg kg-1) + tadalafil (Tad; phosphodiesterase-5 [PDE5] inhibitor; 5 mg kg-1) for 8 weeks. Then, we determined erectile function by the ratio of intracavernosal pressure (ICP)/mean systemic arterial pressure (MAP). Cavernosal tissues were extracted to evaluate histological changes, cell apoptosis, nitric oxide (NO)/cyclic guanosine monophosphate (cGMP), the superoxide dismutase (SOD)/3,4-methylenedioxyamphetamine (MDA) level, and the expression of SIRT1, p53, and forkhead box O3 (FOXO3a) using immunohistochemistry, terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling (TUNEL), enzyme-linked immunosorbent assays, and western blot analysis. Compared with the control, Res treatment significantly improved erectile function, reflected by an increased content of smooth muscle and endothelium, NO/cGMP and SOD activity, and reduced cell apoptosis and MDA levels. The effect of Res was improved by adding Tad. In addition, the protein expression of SIRT1 was increased in the Res group, accompanied by decreased p53 and FOXO3a levels. In addition, inhibition of SIRT1 by NAM treatment resulted in adverse results compared with Res treatment. SIRT1 activation ameliorated aging-related erectile dysfunction, supporting the potential of SIRT1 as a target for erectile dysfunction treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。