The antioxidant protein Oxr1 influences aspects of mitochondrial morphology

抗氧化蛋白 Oxr1 影响线粒体的形态

阅读:9
作者:Yixing Wu, Kay E Davies, Peter L Oliver

Abstract

Oxidative stress (OS) and mitochondrial dysfunction are implicated in neurodegenerative disease, suggesting that antioxidant defence systems are critical for cell survival in the central nervous system (CNS). Oxidation resistance 1 (OXR1) can protect against OS in cellular and mouse models of amyotrophic lateral sclerosis (ALS) when over-expressed, whereas deletion of Oxr1 in mice causes neurodegeneration. OXR1 has emerged therefore as an essential antioxidant protein that controls the susceptibility of neurons to OS. It has been suggested that OXR1 is localised to mitochondria, yet the functional significance of this has not been investigated in the context of neuronal cell death. In order to characterise the role of Oxr1 in mitochondria, we investigated its sub-mitochondrial localisation and demonstrate that specific isoforms are associated with the outer mitochondrial membrane, while the full-length Oxr1 protein is predominately cytoplasmic. Interestingly, cytoplamsic over-expression of these mitochondrially-localised isoforms was still able to protect against OS-induced cell death and prevent rotenone-induced mitochondrial morphological changes. To study the consequences of Oxr1 deletion in vivo, we utilised the bella ataxic mouse mutant. We were unable to identify defects in mitochondrial metabolism in primary cerebellar granule cells (GCs) from bella mice, however a reduction in mitochondrial length was observed in mutant GCs compared to those from wild-type. Furthermore, screening a panel of proteins that regulate mitochondrial morphology in bella GCs revealed de-regulation of phospho-Drp1(Ser616), a key mitochondrial fission regulatory factor. Our data provide new insights into the function of Oxr1, revealing that specific isoforms of this novel antioxidant protein are associated with mitochondria and that the modulation of mitochondrial morphology may be an important feature of its protective function. These results have important implications for the potential use of OXR1 in future antioxidant therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。