A novel in vitro platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options

一种用于研究 SN38 诱导的粘膜损伤和开发 Toll 样受体 4 靶向治疗方案的新型体外平台

阅读:6
作者:Hannah R Wardill, Rachel J Gibson, Ysabella Za Van Sebille, Kate R Secombe, Richard M Logan, Joanne M Bowen

Abstract

Tight junction and epithelial barrier disruption is a common trait of many gastrointestinal pathologies, including chemotherapy-induced gut toxicity. Currently, there are no validated in vitro models suitable for the study of chemotherapy-induced mucosal damage that allow paralleled functional and structural analyses of tight junction integrity. We therefore aimed to determine if a transparent, polyester membrane insert supports a polarized T84 monolayer with the phenotypically normal tight junctions. T84 cells (passage 5-15) were seeded into either 0.6 cm(2), 0.4 µm pore mixed-cellulose transwell hanging inserts or 1.12 cm(2), 0.4 µm pore polyester transwell inserts at varying densities. Transepithelial electrical resistance was measured daily to assess barrier formation. Immunofluoresence for key tight junction proteins (occludin, zonular occludens-1, claudin-1) and transmission electron microscopy were performed to assess tight junction integrity, organelle distribution, and polarity. Reverse transcription-polymerase chain reaction was performed to determine expression of toll-like receptor 4 (TLR4). Liquid chromatography was also conducted to assess SN38 degradation in this model. Polyester membrane inserts support a polarized T84 phenotype with functional tight junctions in vitro. Transmission electron microscopy indicated polarity, with apico-laterally located tight junctions. Immunofluorescence showed membranous staining for all tight junction proteins. No internalization was evident. T84 cells expressed TLR4, although this was significantly lower than levels seen in HT29 cells (P = .0377). SN38 underwent more rapid degradation in the presence of cells (-76.04 ± 1.86%) compared to blank membrane (-48.39 ± 4.01%), indicating metabolic processes. Polyester membrane inserts provide a novel platform for paralleled functional and structural analysis of tight junction integrity in T84 monolayers. T84 cells exhibit the unique ability to metabolize SN38 as well as expressing TLR4, making this an excellent platform to study clinically relevant therapeutic interventions for SN38-induced mucosal damage by targeting TLR4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。