Immunoblot screening of CRISPR/Cas9-mediated gene knockouts without selection

CRISPR/Cas9 介导的基因敲除的免疫印迹筛选(无选择)

阅读:7
作者:Jason A Estep, Erin L Sternburg, Gissell A Sanchez, Fedor V Karginov

Background

Targeted genomic editing using the CRISPR/Cas9 methodology has opened exciting new avenues in probing gene function in virtually any model system, including cultured mammalian cells. Depending on the desired mutation, several experimental options exist in the isolation of clonal lines, such as selection with introduced markers, or screening by PCR amplification of genomic DNA. However, streamlined approaches to establishing deletion and tagging mutants with minimal genomic perturbation are of interest in applying this methodology.

Conclusions

Clonal screening for CRISPR/Cas9-mediated editing events using dot immunoblot is a straightforward and efficient approach that facilitates rapid generation of genomic mutants to study gene function.

Results

We developed a procedure for rapid screening of clonal cell lines for the deletion of a protein of interest following CRISPR/Cas9 targeting in the absence of selective pressure based on dot immunoblots. To assess the technique, we probed clonal isolates of 293-TREx cells that were targeted with three separate sgRNAs against the HuR gene. Validation of knockout candidates by western blot indicated that the normalized protein abundances indicated by the dot blot serve as accurate predictors of deletion. In total, 32 independent biallelic deletion lines out of 248 screened clones were isolated, and recovery of null mutants ranged from 6 to 36% for the individual sgRNAs. Genomic sequencing verified small deletions at the targeted locus. Conclusions: Clonal screening for CRISPR/Cas9-mediated editing events using dot immunoblot is a straightforward and efficient approach that facilitates rapid generation of genomic mutants to study gene function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。