Platelet-Derived TGF (Transforming Growth Factor)-β1 Enhances the Aerobic Glycolysis of Pulmonary Arterial Smooth Muscle Cells by PKM2 (Pyruvate Kinase Muscle Isoform 2) Upregulation

血小板衍生的 TGF(转化生长因子)-β1 通过 PKM2(丙酮酸激酶肌异构体 2)上调增强肺动脉平滑肌细胞的有氧糖酵解

阅读:5
作者:Ying Zhu, Dan Shu, Xue Gong, Meng Lu, Qinyu Feng, Xiang-Bin Zeng, Han Zhang, Jiahui Gao, Ya-Wei Guo, Luman Liu, Rong Ma, Liping Zhu, Qinghua Hu, Zhang-Yin Ming

Background

Metabolic reprogramming is a hallmark of pulmonary arterial hypertension. Platelet activation has been implicated in pulmonary arterial hypertension (PAH), whereas the role of platelet in the pathogenesis of PAH remains unclear.

Conclusions

Our data demonstrate that TGF-β1 released by platelet contributes to the pathogenesis of PAH and further highlights the role of platelet in PAH.

Methods

First, we explored the platelet function of semaxanib' a inhibitor of VEGF receptor (SU5416)/hypoxia mice and monocrotaline-injected rats PAH model. Then we investigated pulmonary arterial smooth muscle cell aerobic glycolysis after being treated with platelet supernatant. TGF (transforming growth factor)-βRI, pyruvate kinase muscle 2, and other antagonists were applied to identify the underlying mechanism. In addition, platelet-specific deletion TGF-β1 mice were exposed to chronic hypoxia and SU5416. Cardiopulmonary hemodynamics, vascular remodeling, and aerobic glycolysis of pulmonary arterial smooth muscle cell were determined.

Results

Here, we demonstrate that platelet-released TGF-β1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells after platelet activation via increasing pyruvate kinase muscle 2 expression. Mechanistically, platelet-derived TGF-β1 regulate spyruvate kinase muscle 2 expression through mTOR (mammalian target of rapamycin)/c-Myc/PTBP-1(polypyrimidine tract binding protein 1)/hnRNPA-1(heterogeneous nuclear ribonucleoprotein A1) pathway. Platelet TGF-β1 deficiency mice are significantly protected from SU5416 plus chronic hypoxia-induced PAH, including attenuated increases in right ventricular systolic pressure and less pulmonary vascular remodeling. Also, in Pf4cre+ Tgfb1fl/fl mice, pulmonary arterial smooth muscle cells showed lower glycolysis capacity and their pyruvate kinase muscle 2 expression decreased. Conclusions: Our data demonstrate that TGF-β1 released by platelet contributes to the pathogenesis of PAH and further highlights the role of platelet in PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。