Silencing of galectin-1 inhibits retinal neovascularization and ameliorates retinal hypoxia in a murine model of oxygen-induced ischemic retinopathy

沉默半乳糖凝集素-1可抑制视网膜新生血管形成并改善小鼠氧诱导缺血性视网膜病变模型中的视网膜缺氧

阅读:6
作者:Ning Yang, Wenxi Zhang, Tao He, Yiqiao Xing

Abstract

Aberrant neovascularization is a consequence of inappropriate angiogenic signaling and contributes to several diseases. Although many regulators of pathogenic angiogenesis have been identified, the understanding of this process remains incomplete. Galectin-1 (Gal-1), as a homodimeric protein with a single carbohydrate-recognition domain, is implicated in several pathologic processes, including angiogenesis; however, its involvement in retinal neovascularization (RNV) remains unknown. Here, we investigated the anti-angiogenic effect of silencing Gal-1 through intravitreal injection in a mouse model of oxygen-induced retinopathy (OIR). Our results revealed that Gal-1 was overexpressed and closely related to retinal neo-vessels in OIR retinas. After silencing Gal-1 via intravitreal injection of adenoviral-Gal-1-RNA interference (Ad-Gal-1-RNAi), RNV and retinal hypoxia were significantly attenuated, indicating the anti-angiogenic effect of Gal-1 inhibition. Western blot analysis and real-time polymerase chain reaction indicated that the expression of both neuropilin-1 (Nrp-1) and B cell lymphoma-2 (Bcl-2) decreased after intravitreal injection of Ad-Gal-1-RNAi, implying the possible involvement of Nrp-1 and Bcl-2 in Gal-1-related angiogenic processes. Additionally, whole-mount fluorescence and hematoxylin and eosin staining showed that intravitreal injection of Ad-Gal-1-RNAi did not significantly disrupt the retinal vasculature and neuronal structure of room air mice. Moreover, Ad-Gal-1-RNAi transfer promoted retinal vascular sprouting and increased retinal vascular perfusion, likely through decreased phosphorylation of myosin phosphatase target protein-1. Collectively, our results demonstrated that Gal-1 functions as an important regulator in RNV and offers a promising strategy for the treatment of RNV diseases, such as proliferative diabetic retinopathy and retinopathy of prematurity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。