Markers of placental function correlate with prevalence and quantity of nucleated fetal cells in maternal circulation in normotensive term pregnancies

胎盘功能标志物与正常血压足月妊娠母体循环中有核胎儿细胞的普遍性和数量相关

阅读:6
作者:Heidi E Fjeldstad, Daniel P Jacobsen, Guro M Johnsen, Meryam Sugulle, Angel Chae, Sami B Kanaan, Hilary S Gammill, Anne Cathrine Staff

Conclusions

Our results suggest that placental dysfunction as evidenced by placenta-associated marker changes, may increase fetal cell transfer. The magnitudes of change tested were based on ranges in PlGF, sFlt-1 and the sFlt-1/PlGF ratio previously demonstrated in pregnancies near and post-term, lending clinical significance to our findings. Our results were statistically significant after adjusting for confounders including gestational age, supporting our novel hypothesis that underlying placental dysfunction potentially is a driver of increased fetal microchimerism.

Material and methods

We included 118 normotensive, clinically uncomplicated pregnancies (gestational age 37+1 up to 42+2 weeks' gestation) pre-delivery. PlGF and sFlt-1 (pg/mL) were measured by Elecsys® Immunoassays. We extracted DNA from maternal and fetal samples and genotyped four human leukocyte antigen loci and 17 other autosomal loci. Paternally inherited, unique fetal alleles served as polymerase chain reaction (PCR) targets for detecting fetal-origin cells in maternal buffy coat. Fetal-origin cell prevalence was assessed by logistic regression, and quantity by negative binomial regression. Statistical exposures included gestational age (weeks), PlGF (100 pg/mL), sFlt-1 (1000 pg/mL) and the sFlt-1/PlGF ratio (10 (pg/mL)/(pg/mL)). Regression models were adjusted for clinical confounders and PCR-related competing exposures.

Methods

We included 118 normotensive, clinically uncomplicated pregnancies (gestational age 37+1 up to 42+2 weeks' gestation) pre-delivery. PlGF and sFlt-1 (pg/mL) were measured by Elecsys® Immunoassays. We extracted DNA from maternal and fetal samples and genotyped four human leukocyte antigen loci and 17 other autosomal loci. Paternally inherited, unique fetal alleles served as polymerase chain reaction (PCR) targets for detecting fetal-origin cells in maternal buffy coat. Fetal-origin cell prevalence was assessed by logistic regression, and quantity by negative binomial regression. Statistical exposures included gestational age (weeks), PlGF (100 pg/mL), sFlt-1 (1000 pg/mL) and the sFlt-1/PlGF ratio (10 (pg/mL)/(pg/mL)). Regression models were adjusted for clinical confounders and PCR-related competing exposures.

Results

Gestational age was positively correlated with fetal-origin cell quantity (DRR = 2.2, P = 0.003) and PlGF was negatively correlated with fetal-origin cell prevalence (odds ratio [OR]100 = 0.6, P = 0.003) and quantity (DRR100 = 0.7, P = 0.001). The sFlt-1 and the sFlt-1/PlGF ratios were positively correlated with fetal-origin cell prevalence (OR1000 = 1.3, P = 0.014 and OR10 = 1.2, P = 0.038, respectively), but not quantity (DRR1000 = 1.1, P = 0.600; DRR10 = 1.1, P = 0.112, respectively). Conclusions: Our results suggest that placental dysfunction as evidenced by placenta-associated marker changes, may increase fetal cell transfer. The magnitudes of change tested were based on ranges in PlGF, sFlt-1 and the sFlt-1/PlGF ratio previously demonstrated in pregnancies near and post-term, lending clinical significance to our findings. Our results were statistically significant after adjusting for confounders including gestational age, supporting our novel hypothesis that underlying placental dysfunction potentially is a driver of increased fetal microchimerism.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。