Dysregulated repair and inflammatory responses by e-cigarette-derived inhaled nicotine and humectant propylene glycol in a sex-dependent manner in mouse lung

电子烟吸入尼古丁和保湿剂丙二醇对小鼠肺组织修复和炎症反应的失调与性别相关

阅读:5
作者:Qixin Wang, Naushad Ahmad Khan, Thivanka Muthumalage, Gina R Lawyer, Samantha R McDonough, Tsai-Der Chuang, Ming Gong, Isaac K Sundar, Virender K Rehan, Irfan Rahman

Abstract

Nicotine inhalation via electronic cigarettes (e-cigs) is an emerging concern. However, little is known about the acute toxicity in the lungs following inhalation of nicotine-containing e-cig aerosols. We hypothesized that acute exposure to aerosolized nicotine causes lung toxicity by eliciting inflammatory and dysregulated repair responses. Adult C57BL/6J mice were exposed 2 h daily for 3 days to e-cig aerosols containing propylene glycol (PG) with or without nicotine. Acute exposure to nicotine-containing e-cig aerosols induced inflammatory cell influx (neutrophils and CD8a+ T-lymphocytes), and release of pro-inflammatory cytokines in bronchoalveolar lavage fluid in a sex-dependent manner. Inhalation of e-cig aerosol containing PG alone significantly augmented the lung levels of various homeostasis/repair mediators (PPARγ, ADRP, ACTA2, CTNNB1, LEF1, β-catenin, E-cadherin, and MMP2) in a sex-dependent manner when compared to air controls. These findings were accompanied by an increase in protein abundance and altered gene expression of lipogenic markers (PPARγ, ADRP) and myogenic markers (fibronectin, α-smooth muscle actin and β-catenin), suggesting a dysregulated repair response in mouse lungs. Furthermore, exposure to nicotine containing e-cig aerosols or PG alone differentially affected the release of pro-inflammatory cytokines in healthy and COPD human 3D EpiAirway tissues. Overall, acute exposure to nicotine containing e-cig aerosols was sufficient to elicit a pro-inflammatory response and altered mRNA and protein levels of myogenic, lipogenic, and extracellular matrix markers in mouse lung in a sex-dependent manner. Thus, acute exposure to inhaled nicotine via e-cig leads to dysregulated repair and inflammatory responses, which may lead to airway remodeling in the lungs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。