Hepatic Ischemia-reperfusion Injury in Mice was Alleviated by Rac1 Inhibition - More Than Just ROS-inhibition

抑制 Rac1 可减轻小鼠肝脏缺血再灌注损伤 - 不仅仅是抑制 ROS

阅读:6
作者:Zhilin Sha, Yajie Yang, Ruling Liu, Haili Bao, Shaohua Song, Junfeng Dong, Meng Guo, Yuanyu Zhao, Hu Liu, Guoshan Ding

Aims

Reducing reactive oxygen species (ROS) production has proven an effective way for alleviating oxidative stress during ischemia-reperfusion injury (IRI). Moreover, inhibition of Rac1 could reduce ROS production and prevent oxidative stress injury. Previous studies have suggested a positive interactivation feedback loop between Rac1 and hypoxia-inducible factor (HIF)-1α, the latter being up-regulated early during ischemia. The positive inter-activation between Rac1 and HIF-1α would aggravate ROS production, thereby promoting IRI. This study was designed to verify the effects of Rac1 inhibition on hepatic IRI both at animal and cellular levels and to explore the interaction between Rac1 and HIF-1α during hepatic IRI.

Background and aims

Reducing reactive oxygen species (ROS) production has proven an effective way for alleviating oxidative stress during ischemia-reperfusion injury (IRI). Moreover, inhibition of Rac1 could reduce ROS production and prevent oxidative stress injury. Previous studies have suggested a positive interactivation feedback loop between Rac1 and hypoxia-inducible factor (HIF)-1α, the latter being up-regulated early during ischemia. The positive inter-activation between Rac1 and HIF-1α would aggravate ROS production, thereby promoting IRI. This study was designed to verify the effects of Rac1 inhibition on hepatic IRI both at animal and cellular levels and to explore the interaction between Rac1 and HIF-1α during hepatic IRI.

Conclusions

Our study supports a protective effect of Rac1 inhibition on hepatic IRI. Aside from the classic topics of reducing ROS production and oxidative stress, our study showed an interaction between Rac1 and HIF-1α signaling during hepatic IRI.

Methods

C57B/6 mice and AML-12 cells were used for the construction of hepatic IRI animal and cell models. Rac1 inhibition was achieved by NSC23766 (a specific Rac1 inhibitor). Lentiviral vectors were used for Rac1 knockdown. At designated time points, serum and liver tissues were collected from the mice and treated cells were collected for further analysis.

Results

NSC23766 treatment significantly alleviated the hepatic IRI in mice, manifesting as lower vacuolation score and less apoptosis cells, lower ROS and serum/liver alanine aminotransferase/aspartate aminotransferase levels, and fewer activated inflammatory cells. IRI of AML-12 was also alleviated by 50 µM NSC23766 or Rac1-knockdown, manifesting as reduced cell apoptosis, less extensive interruption of mitochondrial membrane potential, down-regulation of apoptosis, and effects on DNA damage-related proteins. Interestingly, Rac1 knockdown also down-regulated the expression level of HIF-1α. Conclusions: Our study supports a protective effect of Rac1 inhibition on hepatic IRI. Aside from the classic topics of reducing ROS production and oxidative stress, our study showed an interaction between Rac1 and HIF-1α signaling during hepatic IRI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。