Nanoparticles induce genetic, biochemical, and ultrastructure variations in Salvadora persica callus

纳米粒子诱导桃树愈伤组织遗传、生化和超微结构变化

阅读:4
作者:Manar S Fouda, Mohamed H Hendawey, Ghada A Hegazi, Hayat M Sharada, Nagwa I El-Arabi, Mohamed E Attia, Elham R S Soliman

Background

Salvadora persica is an endangered medicinal plant due to difficulties in its traditional propagation. It is rich in bioactive compounds that possess many pharmaceutical, antimicrobial activities and widely used in folk medicine. The current study aims at in vitro propagation of Salvadora persica and the application of different nanoparticles (NPs) to induce the synthesis of bioactive and secondary metabolites within the plant. The cellular and genetic responses to the application of different NPs were evaluated.

Conclusion

This study is a stepping stone in developing a productive protocol for in vitro production of benzyl isothiocyanate from Salvadora persica using NPs as a valuable anticancer compound.

Results

The impact of nanoparticles NPs (ZnO, SiO2, and Fe3O4) on callus growth of Salvadora persica and the production of its active constituent benzyl isothiocyanate was examined, regarding some oxidative stress markers, antioxidant enzymes, and genetic variabilities. An encouraging impact of 0.5 mg/l ZnO NPs on benzyl isothiocyanate production was shown reaching up to 0.905 mg/g callus fresh weight in comparison to 0.539 mg/g in control callus. This was associated with decreasing hydrogen peroxide content and increasing superoxide dismutase and peroxidase activities. The deposition of the NPs on cellular organelles was detected using a transmission microscope. Fifteen Inter-Simple Sequence Repeats (ISSR) primers detected an overall, 79.1% polymorphism among different treatments. A reduction in genomic DNA template stability (GTS) was made and was more pronounced in higher doses of different NPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。