Defining Endocytic Pathways of Fucoidan-Coated PIBCA Nanoparticles from the Design of their Surface Architecture

从表面结构设计定义褐藻糖胶包被的 PIBCA 纳米粒子的内吞途径

阅读:6
作者:M C B Lira-Nogueira, V P Gibson, V Nicolas, N S Santos-Magalhães, C Vauthier

Conclusion

Internalization pathways of PIBCA nanoparticles by J774A.1 macrophages could be determined by nanoparticle fucoidan surface composition and architecture. In turn, this influenced the extent of internalization and localization of accumulated nanoparticles within cells. The results are of interest for rationalizing the design of nanoparticles for potential cytoplamic drug delivery by controlling the nature of the nanoparticle surface.

Methods

Nanoparticles (A0, A25, A100, R0, R25 ) were prepared by anionic or redox radical emulsion polymerization using mixtures of dextran and fucoidan (0, 25, 100 % in fucoidan). Cell uptake was evaluated by incubating J774A.1 macrophages with nanoparticles. Endocytic pathways were studied by incubating cells with endocytic pathway inhibitors (chlorpromazine, genistein, cytochalasin D, methyl-ß-cyclodextrin and nocodazole) and nanoparticle uptake was evaluated by flow cytometry and confocal microscopy.

Purpose

This work investigated the endocytic pathways taken by poly(isobutylcyanoacrylate) (PIBCA) nanoparticles differing in their surface composition and architecture, assuming that this might determine their efficiency of intracellular drug delivery.

Results

The fucoidan-coated PIBCA nanoparticles A25 were internalized 3-fold more efficiently than R25 due to the different architecture of the fucoidan chains presented on the surface. Different fucoidan density and architecture led to different internalization pathway preferred by the cells. Large A100 nanoparticles with surface was covered with fucoidan chains in a loop and train configuration were internalized the most efficiently, 47-fold compared with A0, and 3-fold compared with R0 and R25 through non-endocytic energy-independent pathways and reached the cell cytoplasm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。