Vesicle Induced Receptor Sequestration: Mechanisms behind Extracellular Vesicle-Based Protein Signaling

囊泡诱导的受体隔离:细胞外囊泡蛋白信号转导的机制

阅读:5
作者:Oskar Staufer, Jochen Estebano Hernandez Bücher, Julius Fichtler, Martin Schröter, Ilia Platzman, Joachim P Spatz

Abstract

Extracellular vesicles (EVs) are fundamental for proper physiological functioning of multicellular organisms. By shuttling nucleic acids and proteins between cells, EVs regulate a plethora of cellular processes, especially those involved in immune signalling. However, the mechanistic understanding concerning the biophysical principles underlying EV-based communication is still incomplete. Towards holistic understanding, particular mechanisms explaining why and when cells apply EV-based communication and how protein-based signalling is promoted by EV surfaces are sought. Here, the authors study vesicle-induced receptor sequestration (VIRS) as a universal mechanism augmenting the signalling potency of proteins presented on EV-membranes. By bottom-up reconstitution of synthetic EVs, the authors show that immobilization of the receptor ligands FasL and RANK on EV-like vesicles, increases their signalling potential by more than 100-fold compared to their soluble forms. Moreover, the authors perform diffusion simulations within immunological synapses to compare receptor activation between soluble and EV-presented proteins. By this the authors propose vesicle-triggered local clustering of membrane receptors as the principle structural mechanism underlying EV-based protein presentation. The authors conclude that EVs act as extracellular templates promoting the local aggregation of membrane receptors at the EV contact site, thereby fostering inter-protein interactions. The results uncover a potentially universal mechanism explaining the unique structural profit of EV-based intercellular signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。