Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay

果蝇神经母细胞的选择受 Notch、Snail、SoxB 和 EMT 基因相互作用控制

阅读:7
作者:Badrul Arefin, Farjana Parvin, Shahrzad Bahrampour, Caroline Bivik Stadler, Stefan Thor

Abstract

In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。