Altered microRNA, mRNA, and Protein Expression of Neurodegeneration-Related Biomarkers and Their Transcriptional and Epigenetic Modifiers in a Human Tau Transgenic Mouse Model in Response to Developmental Lead Exposure

人类 Tau 转基因小鼠模型中,在发育期铅暴露后,神经退行性相关生物标志物的 microRNA、mRNA 和蛋白质表达发生改变,以及它们的转录和表观遗传修饰因子发生改变

阅读:5
作者:Anwar M Masoud, Syed W Bihaqi, Bothaina Alansi, Miriam Dash, Gehad M Subaiea, William E Renehan, Nasser H Zawia

Abstract

Amyloid deposits originating from the amyloid-β protein precursor (AβPP) and aggregates of the microtubule associated protein tau (MAPT) are the hallmarks of Alzheimer's disease (AD). Animal studies have demonstrated a link between early life exposure to lead (Pb) and latent overexpression of the AβPP and MAPT genes and their products via epigenetic reprogramming. The present study monitored APP gene and epigenetic mediators and transcription factors known to regulate it. Western blot analysis and quantitative polymerase chain reaction (qPCR) were used to study the mRNA, miRNA, and proteins levels of AβPP, specificity protein 1 (SP1; a transcriptional regulator of amyloid and tau pathway), and epigenetic intermediates namely: DNA methyltransferase (DNMT) 1, DNMT3a and Methyl- CpG protein binding 2 (MeCP2) in the cerebral cortex of transgenic mice (Knock-in for human MAPT). These transgenic mice were developmentally exposed to Pb and the impact on mRNA, miRNA, and protein levels was scrutinized on postnatal days (PND) 20 and 50. The data revealed a consistent inverse relationship between miRNA and protein levels for SP1 and AβPP both in the basal and exposed conditions, which may influence the levels of their corresponding proteins. On the other hand, the relationship between miRNA and protein levels was not correlative for DNMT1 and DNMT3a. MeCP2 miRNA protein levels corresponded only following environmental exposure. These results suggest that developmental exposure to Pb and subsequent AβPP protein levels may be controlled through transcriptional regulators and epigenetic mechanisms that mainly involve miRNA regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。