Amyloid-β Induces AMPA Receptor Ubiquitination and Degradation in Primary Neurons and Human Brains of Alzheimer's Disease

淀粉样蛋白-β 诱导阿尔茨海默病原代神经元和人脑中的 AMPA 受体泛素化和降解

阅读:6
作者:Yanmin Zhang, Ouyang Guo, Yuda Huo, Guan Wang, Heng-Ye Man

Abstract

As the primary mediator for synaptic transmission, AMPA receptors (AMPARs) are crucial for synaptic plasticity and higher brain functions. A downregulation of AMPAR expression has been indicated as one of the early pathological molecular alterations in Alzheimer's disease (AD), presumably via amyloid-β (Aβ). However, the molecular mechanisms leading to the loss of AMPARs remain less clear. We report that in primary neurons, application of Aβ triggers AMPAR internalization accompanied with a decrease in cell-surface AMPAR expression. Importantly, in both Aβ-treated neurons and human brain tissue from AD patients, we observed a significant decrease in total AMPAR amount and an enhancement in AMPAR ubiquitination. Consistent with facilitated receptor degradation, AMPARs show higher turnover rates in the presence of Aβ. Furthermore, AD brain lysates and Aβ-incubated neurons show increased expression of the AMPAR E3 ligase Nedd4 and decreased expression of AMPAR deubiquitinase USP46. Changes in these enzymes are responsible for the Aβ-dependent AMPAR reduction. These findings indicate that AMPAR ubiquitination acts as the key molecular event leading to the loss of AMPARs and thus suppressed synaptic transmission in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。