Role of the Thyroid Gland in Expression of the Thyroid Phenotype of Sbp2-Deficient Mice

甲状腺在 Sbp2 缺陷小鼠甲状腺表型表达中的作用

阅读:6
作者:Haruki Fujisawa, Manassawee Korwutthikulrangsri, Jiao Fu, Xiao-Hui Liao, Alexandra M Dumitrescu

Abstract

Selenocysteine insertion sequence-binding protein 2, SBP2 (SECISBP2), is required for selenoprotein synthesis. Partial SBP2 deficiency syndrome manifests characteristic thyroid function tests. The Sbp2 deficiency mouse model, Sbp2 inducible conditional knockout (iCKO), replicates this thyroid phenotype and was used for pathophysiologic investigations. As selenoproteins have an antioxidative role in thyroid gland function, their deficiencies have potential to affect thyroid hormone (TH) synthesis. Sbp2 iCKO mice had larger thyroids relative to body weight and increased thyroidal thyroxine (T4) and triiodothyronine (T3) content while 5' deiodinases enzymatic activities were decreased. Possible mechanisms for the discrepancy between the increased thyroidal T3 and normal circulating T3 were investigated in dynamic experiments. Treatment with bovine thyroid-stimulating hormone (TSH) resulted in increased delta T4 in Sbp2 iCKO mice, indicating increased availability of preformed thyroidal TH. Next, the recovery of TH levels was evaluated after withdrawal of chemical suppression. At one day, Sbp2 iCKO mice had higher serum and thyroidal T3 concomitant with lower TSH, confirming increased capacity of TH synthesis in Sbp2 deficiency. Decreased TH secretion was ruled out as serum and thyroidal TH were high in Sbp2 iCKO mice. Treatment with a low-iodine diet also ruled out thyroidal secretion defect as both serum levels and thyroidal TH content similarly declined over time in Sbp2-deficient mice compared to wild-type (Wt) mice. This study provides evidence for unsuspected changes in the thyroid gland that contribute to the thyroid phenotype of Sbp2 deficiency, with increased thyroidal T4 and T3 content in the setting of increased TH synthesis capacity contributing to the circulating TH levels while thyroidal secretion is preserved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。