p85α regulatory subunit isoform controls PI3-kinase and TRPC6 membrane translocation

p85α 调节亚基异构体控制 PI3-激酶和 TRPC6 膜转位

阅读:8
作者:Pinaki Chaudhuri, Priya Putta, Linda M Graham, Michael A Rosenbaum

Abstract

Activation of phosphatidylinositol 3-kinase (PI3K) by lipid oxidation products, including lysophosphatidylcholine (lysoPC), increases the externalization of canonical transient receptor potential 6 (TRPC6) channels leading to a subsequent increase in intracellular calcium that contributes to cytoskeletal changes which inhibit endothelial cell (EC) migration in vitro and impair EC healing of arterial injuries in vivo. The PI3K p110α and p110δ catalytic subunit isoforms regulate lysoPC-induced TRPC6 externalization in vitro, but have many other functions. The goal of the current study is to identify the PI3K regulatory subunit isoform involved in TRPC6 externalization to potentially identify a more specific treatment regimen to improve EC migration and arterial healing, while minimizing off-target effects. Decreasing the p85α regulatory subunit isoform protein levels, but not the p85β and p55γ regulatory subunit isoforms, with small interfering RNA inhibits lysoPC-induced translocation of the PI3K catalytic subunit to the plasma membrane, dramatically decreased phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production and TRPC6 externalization, and significantly improves EC migration in the presence of lysoPC. These results identify the important and specific role of p85α in controlling translocation of PI3K from the cytosol to the plasma membrane and PI3K-mediated TRPC externalization by oxidized lipids. Current PI3K inhibitors block the catalytic subunit, but our data suggest that the regulatory subunit is a novel therapeutic target to promote EC migration and healing after arterial injuries that occur with angioplasty.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。