Identification of a region in p47phox/NCF1 crucial for phagocytic NADPH oxidase (NOX2) activation

鉴定 p47phox/NCF1 中对吞噬 NADPH 氧化酶 (NOX2) 激活至关重要的区域

阅读:10
作者:Outi Sareila, Noora Jaakkola, Peter Olofsson, Tiina Kelkka, Rikard Holmdahl

Abstract

A point mutation in the mouse Ncf1(m1J) gene decreases production of ROS by the phagocytic NOX2 complex. Three mRNA splice variants are expressed, but only one is expressed as a protein, although at lower levels than the WT NCF1 (also known as p47phox). Our aim was to investigate whether the mutant p47phox, lacking 8 aa, is active, but as a result of its low expression, ROS production is decreased in Ncf1(m1J) mice, or whether the mutant p47phox completely lacks the capability to activate the NOX2 complex. The p47phox mutant (Δ228-235), which was equal to the protein in Ncf1(m1J) mice, failed to activate the NOX2 complex. When the deleted region was narrowed down to 2 aa, the p47phox protein remained inactive and failed to translocate to the membrane upon activation. Single amino acid substitutions revealed Thr233 to be vital for ROS production. Residues Tyr231 and Val232 also seemed to be important for p47phox function, as p47phox_Y231G and p47phox_V232G resulted in a >50% decrease in ROS production by the NOX2 complex. In addition, we identified the epitope of the D-10 anti-p47phox mAb. In conclusion, the p47phox protein variant expressed in Ncf1(m1J) mice is completely defective in activating the NOX2 complex to produce ROS, and the effect is dependent on SH3 region amino acids at positions 231-233, which are vital for the proper assembly of the NOX2 complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。