Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor

粒细胞集落刺激因子调控MTA1表达的分子机制

阅读:7
作者:Arathy S Kumar, Sankar Jagadeeshan, Anirudh Subramanian, Saravana Babu Chidambaram, Rohan Prasad Surabhi, Mahak Singhal, Hemadev Bhoopalan, Sathiya Sekar, Ravi Shankar Pitani, Prathiba Duvuru, Ganesh Venkatraman, Suresh K Rayala

Abstract

Parkinson disease (PD) is a neurodegenerative disorder with loss of dopaminergic neurons of the brain, which results in insufficient synthesis and action of dopamine. Metastasis-associated protein 1 (MTA1) is an upstream modulator of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, and hence MTA1 plays a significant role in PD pathogenesis. To impart functional and clinical significance to MTA1, we analyzed MTA1 and TH levels in the substantia nigra region of a large cohort of human brain tissue samples by Western blotting, quantitative PCR, and immunohistochemistry. Our results showed that MTA1 and TH levels were significantly down-regulated in PD samples as compared with normal brain tissue. Correspondingly, immunohistochemistry analysis for MTA1 in substantia nigra sections revealed that 74.1% of the samples had a staining intensity of <6 in the PD samples as compared with controls, 25.9%, with an odds ratio of 8.54. Because of the clinical importance of MTA1 established in PD, we looked at agents to modulate MTA1 expression in neuronal cells, and granulocyte colony-stimulating factor (G-CSF) was chosen, due to its clinically proven neurogenic effects. Treatment of the human neuronal cell line KELLY and acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model with G-CSF showed significant induction of MTA1 and TH with rescue of phenotype in the mouse model. Interestingly, the observed induction of TH was compromised on silencing of MTA1. The underlying molecular mechanism of MTA1 induction by G-CSF was proved to be through induction of c-Fos and its recruitment to the MTA1 promoter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。