Targeting Beclin1 as an Adjunctive Therapy against HIV Using Mannosylated Polyethylenimine Nanoparticles

使用甘露糖化聚乙烯亚胺纳米粒子靶向 Beclin1 作为抗 HIV 的辅助疗法

阅读:7
作者:Myosotys Rodriguez, Yemmy Soler, Mohan Kumar Muthu Karuppan, Yuling Zhao, Elena V Batrakova, Nazira El-Hage

Abstract

Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally delivered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1-48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。