Hongjingtian Injection Inhibits Proliferation and Migration and Promotes Apoptosis in High Glucose-Induced Vascular Smooth Muscle Cells

红景天注射液抑制高糖诱导的血管平滑肌细胞增殖、迁移并促进其凋亡

阅读:4
作者:Zhengyuan Fan, Congcong Guo, Yuhan Zhang, Jinming Yao, Lin Liao, Jianjun Dong

Background

Hongjingtian injection (HJT) is administered in the treatment of vascular diseases, including diabetic angiopathies (DA). However, its underlying mechanisms have not been examined systematically.

Conclusion

These findings systematically evaluate the potential mechanisms of HJT for the treatment of DA. HJT suppressed the proliferation and migration and promoted the apoptosis of HG-induced VSMCs partly by inhibiting the AKT pathway. Additionally, this study may provide a quick and effective way to investigate the molecular mechanisms of traditional Chinese medicine.

Methods

In this research, we explored potential mechanisms of HJT through network pharmacology. HG-stimulated A7r5 cells served as the cell model. Cell proliferation, migration and apoptosis were investigated. The effects on key targets and the AKT pathway were verified by Western blotting in experiments with the AKT inhibitor LY294002 or activator SC79.

Results

Network analysis predicted that HJT targeted 10 candidate targets and 15 pathways including cell proliferation, migration and apoptosis in response to DA. Functional experiments showed that HJT markedly suppressed the proliferation and migration and promoted the apoptosis of HG-induced VSMCs, which validated the prediction. Mechanistically, HJT significantly downregulated the expression of pAKT, MMP9, and PCNA, upregulated the expression of p53 and cleaved caspase-3 and increased the Bax/Bcl-2 ratio compared with the HG group. SC79, an AKT activator, partially reversed the inhibitory effects of HJT on HG-induced VSMCs, confirming the involvement of the AKT pathway. Furthermore, the presence of the AKT inhibitor LY294002 had a similar inhibitory effect as HJT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。