miR-195-Sirt3 Axis Regulates Angiotensin II-Induced Hippocampal Apoptosis and Learning Impairment in Mice

miR-195-Sirt3 轴调节血管紧张素 II 诱导的小鼠海马细胞凋亡和学习障碍

阅读:7
作者:Xiaosheng Fan, Ming Xiao, Qinghai Zhang, Na Li, Peili Bu

Conclusion

The results suggested that miR-195-sirt3 axis plays an important role in the ANG II-induced hippocampal apoptosis via altering mitochondria-apoptosis proteins and mitochondria permeability and that hippocampal apoptosis is associated with impaired learning capability in hypertensive mice. This study provides insights into the molecular architecture of apoptosis-related neurodegenerative diseases.

Methods

ANG II infusion was used to establish the hypertensive model in HT22 cells and 129S6/SvEvTac mice, respectively. TUNEL assay was used to evaluate the apoptosis level. Mitochondrial membrane potential (MMP) was measured to evaluate the mitochondrial property. Immunohistochemistry, RT-PCR, Western blotting, and luciferase reporter assay were conducted to determine the underlying molecular mechanism.

Objective

Apoptosis plays an essential role in cell development and aging, which is associated with a series of diseases, such as neurodegeneration. MircoRNAs exert important roles in the regulation of gene expression. As a stress-responsive deacetylase in mitochondria, sirtuin-3 (sirt3) is a key regulator for mitochondrial function and apoptosis. Also, miR-195 has been demonstrated to be involved in cell cycle and apoptosis. Therefore, this study aimed to investigate the effects of miR-195-sirt3 axis on angiotensin II (ANG II)-induced hippocampal apoptosis and behavioral influence. Materials and

Results

The results revealed that ANG II treatment promoted apoptosis in the hippocampal cells and tissues, along with increased sirt3 and decreased miR-195 expression. Silencing sirt3 by genetic engineering or siRNA reversed ANG II-induced hippocampal apoptosis. Sirt3 was identified as a direct target gene of miR-195. Forced expression of miR-195 could play counteractive roles in hippocampal apoptosis induced by ANG II. Furthermore, the behavioral assay demonstrated that ANG II-induced hippocampal apoptosis impaired the performance in the spatial navigation task, but not in the spatial memory task.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。