A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs

一种新型 p19 融合蛋白作为短干扰 RNA 的递送剂

阅读:7
作者:Dana C Danielson, Natalie Sachrajda, Wei Wang, Roxana Filip, John Paul Pezacki

Abstract

RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the "TAT" peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。