A novel BAG5 variant impairs the ER stress response pathway, causing dilated cardiomyopathy and arrhythmia

一种新的 BAG5 变体会损害 ER 应激反应通路,导致扩张型心肌病和心律失常

阅读:3
作者:Rutairat Wongong, Anusak Kijtawornrat, Chalurmpon Srichomthong, Siraprapa Tongkobpeth, Phichittra Od-Ek, Adjima Assawapitaksakul, Natarin Caengprasath, Apichai Khongphatthanayothin, Thantrira Porntaveetus, Vorasuk Shotelersuk

Abstract

Pathogenic BAG5 variants recently linked to dilated cardiomyopathy (DCM) prompt further investigation into phenotypic, mutational, and pathomechanistic aspects. We explored the clinical and molecular characteristics of DCM associated with BAG5 variants, uncovering the consistently severe manifestations of the disease and its impact on the endoplasmic reticulum (ER) stress response. The analysis involved three siblings affected by DCM and arrhythmia, along with their four unaffected siblings, their unaffected father, and their mother who exhibited arrhythmia. The parents were consanguineous. Exome and Sanger sequencing identified a novel BAG5 variant, c.444_445delGA (p.Lys149AsnfsTer6), homozygous in affected siblings and heterozygous in parents and unaffected siblings. We generated heterozygous and homozygous Bag5 point mutant knock-in (KI) mice and evaluated cardiac pathophysiology under stress conditions, including tunicamycin (TN) administration. Bag5-/- mice displayed no abnormalities up to 12 months old and showed no anomalies during an exercise stress test. However, following TN injection, Bag5-/- mice exhibited significantly reduced left ventricular fractional shortening (LVFS) and ejection fraction (LVEF). Their cardiac tissues exhibited a notable increase in apoptotic cells, despite non-distinctive changes in CHOP and GRP78 levels. Interestingly, only Bag5 KI male mice demonstrated arrhythmia, which was more pronounced in Bag5-/- than in Bag5+/-males. Here, our study reveals a novel BAG5 mutation causing DCM by impairing the ER stress response, with observed sex-specific arrhythmia differences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。