Modulation of O-GlcNAcylation Regulates Autophagy in Cortical Astrocytes

O-GlcNAc 糖基化调节皮质星形胶质细胞的自噬

阅读:6
作者:Md Ataur Rahman, Hongik Hwang, Yoonjeong Cho, Hyewhon Rhim

Abstract

The addition of O-linked β-N-acetylglucosamine (O-GlcNAcylation) to serine and threonine residues is a common posttranslational modification of intracellular proteins which modulates protein functions and neurodegenerative diseases, controlled by a single pair of enzymes, O-GlcNAcase (OGA), and O-GlcNAcylation transferase (OGT). Autophagy is a cellular recycling pathway activated by stress and nutrient signaling; however, the mechanism by which O-GlcNAcylation modification regulates autophagy in cortical astrocytes is poorly understood. Here, we report that increased O-GlcNAcylation by the suppression of OGA activity using thiamet-G and OGA siRNA did not affect autophagy, whereas decreased O-GlcNAcylation caused by OGT inhibition by alloxan and OGT siRNA increased autophagy. OGT inhibitor and siRNA accumulated LC3 puncta, and cotreatment with chloroquine (CQ), an autophagy inhibitor, significantly increased LC3 puncta and LC3-II protein, confirming that decreased O-GlcNAcylation promotes autophagic flux. In particular, we found that OGT knockdown increases the fusion between autophagosomes as well as lysosomes and stimulates autophagy to promote lysosomal-associated membrane protein 1 (LAMP-1). Additionally, decreasing O-GlcNAcylation by treatment with alloxan, OGT siRNA, and OGA overexpression significantly decreased the level of autophagy substrate SQSTM1/p62, indicating that autophagic degradation was activated. Together, our study reveals a mechanism by which the modulation of O-GlcNAcylation modification regulates autophagy in mouse cortical astrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。