Abstract
Toxoplasma gondii (T. gondii) is a neurophilic and intracellular parasite that can affect plenty of vertebrate animals, including humans. Recent researches indicate that T. gondii infection is associated with neurodegenerative diseases such as Alzheimer's disease(AD). In addition, tau hyper-phosphorylation is a crucial event leading to the formation of nerve fiber tangles in AD. Despite the efforts to understand the interactions between T. gondii and AD, there are no clear results available so far. Here, we infected mice with the T. gondii of the Chinese 1 genotype Wh6 strain (TgCtwh6) for 60 days. Then we observed the formation of tissue cysts in the brain, the damage of neuron and the increased expression of phosphorylated tau (p-tau) in the hippocampal tissue of the mice. Similarly, we also found that p-tau, glycogen synthase kinase 3 beta (GSK3β), and phosphorylated GSK3β (p-GSK3β) were upregulated in vitro in TgCtwh6 challenged hippocampal neuron cell strain, HT22 cells. We noted a down-regulated expression of GSK3β,p-GSK3β, and p-tau in HT22 cells, which were pretreated with LiCl, an inhibitor of GSK3β. These data suggested that p-GSK3β may mediate tau phosphorylation after TgCtwh6 infection. Furthermore, TgCtwh6 infection also caused the increased expression of Bax and Caspase3, the decreased expression of Bcl-XL in HT22 cells, which had both early and late apoptosis. In all, our results indicated that TgCtwh6 infection not only led to phosphorylation of tau via activating GSK3β but also promoted hippocampal neuron apoptosis. Our research may partially reveal the mechanism with which TgCtwh6 induce neurofibrillary pathology.
