Natural variation in the yeast glucose-signaling network reveals a new role for the Mig3p transcription factor

酵母葡萄糖信号网络的自然变异揭示了Mig3p转录因子的新作用

阅读:7
作者:Jeffrey A Lewis, Audrey P Gasch

Abstract

The Crabtree effect, in which fermentative metabolism is preferred at the expense of respiration, is a hallmark of budding yeast's glucose response and a model for the Warburg effect in human tumors. While the glucose-responsive transcriptional repressors Mig1p and Mig2p play well-characterized roles in the Crabtree effect, little function for the related Mig3p transcription factor has been uncovered, despite numerous investigations of laboratory yeast strains. Here we studied a wild isolate of Saccharomyces cerevisiae to uncover a critical role for Mig3p that has been lost in S288c-derived laboratory strains. We found that Mig3p affects the expression of hundreds of glucose-responsive genes in the oak strain YPS163, both during growth under standard conditions and upon ethanol treatment. Our results suggest that Mig3p may act as a multifunctional activator/repressor that plays separate roles under standard vs. stress conditions and that this function has been largely lost in the lab strains. Population analysis suggests that the lab strain and several wild strains harbor mutations that diminish Mig3p function. Thus, by expanding our attention to multiple genetic backgrounds, we have uncovered an important missing link in a key metabolic response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。