Identification of modulators of autophagic flux in an image-based high content siRNA screen

基于图像的高内涵 siRNA 筛选中自噬通量调节剂的鉴定

阅读:6
作者:Christopher M Hale, Qingwen Cheng, Danny Ortuno, Ming Huang, Dana Nojima, Paul D Kassner, Songli Wang, Michael M Ollmann, Holly J Carlisle

Abstract

Autophagy is the primary process for recycling cellular constituents through lysosomal degradation. In addition to nonselective autophagic engulfment of cytoplasm, autophagosomes can recognize specific cargo by interacting with ubiquitin-binding autophagy receptors such as SQSTM1/p62 (sequestosome 1). This selective form of autophagy is important for degrading aggregation-prone proteins prominent in many neurodegenerative diseases. We carried out a high content image-based siRNA screen (4 to 8 siRNA per gene) for modulators of autophagic flux by monitoring fluorescence of GFP-SQSTM1 as well as colocalization of GFP-SQSTM1 with LAMP2 (lysosomal-associated membrane protein 2)-positive lysosomal vesicles. GFP-SQSTM1 and LAMP2 phenotypes of primary screen hits were confirmed in 2 cell types and profiled with image-based viability and MTOR signaling assays. Common seed analysis guided siRNA selection for these assays to reduce bias toward off-target effects. Confirmed hits were further validated in a live-cell assay to monitor fusion of autophagosomes with lysosomes. Knockdown of 10 targets resulted in phenotypic profiles across multiple assays that were consistent with upregulation of autophagic flux. These hits include modulators of transcription, lysine acetylation, and ubiquitination. Two targets, KAT8 (K[lysine] acetyltransferase 8) and CSNK1A1 (casein kinase 1, α 1), have been implicated in autophagic regulatory feedback loops. We confirmed that CSNK1A1 knockout (KO) cell lines have accelerated turnover of long-lived proteins labeled with (14)C-leucine in a pulse-chase assay as additional validation of our screening assays. Data from this comprehensive autophagy screen point toward novel regulatory pathways that might yield new therapeutic targets for neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。