miR‑508‑3p suppresses the development of ovarian carcinoma by targeting CCNA2 and MMP7

miR-508-3p 通过靶向 CCNA2 和 MMP7 抑制卵巢癌的发展

阅读:6
作者:Fei Guo #, Kai Zhang #, Meiyue Li, Lei Cui, Guoyan Liu, Ye Yan, Wenyan Tian, Fei Teng, Yanfang Zhang, Chao Gao, Jinping Gao, Yingmei Wang, Fengxia Xue

Abstract

Ovarian cancer is the most lethal gynecological tumor, and the 5‑year survival rate is only ~40%. The poor survival rate is due to cancer diagnosis at an advanced stage, when the tumor has metastasized. A better understanding of the molecular pathogenesis of tumor growth and metastasis is needed to improve patient prognosis. MicroRNAs (miRs) regulate carcinogenesis and development of cancers. However, the role of miR‑508‑3p in ovarian cancer remains largely unknown. Thus, the present study aimed to investigate the possible functions of miR‑508‑3p in the modulation of development of ovarian cancer. The results of the present study demonstrated that miR‑508‑3p mimics inhibited ovarian cancer cell proliferation, migration and invasion. Reporter gene assay results demonstrated that miR‑508‑3p suppressed cancer cell proliferation by directly targeting the 3'‑untranslated region (UTR) of cyclin A2 (CCNA2) and suppressed migration and invasion by directly targeting the 3'‑UTR of matrix metalloproteinase 7 (MMP7). In addition, high CCNA2 and MMP7 expression levels were associated with low miR‑508‑3p expression in ovarian cancer tissues. Furthermore, miR‑508‑3p and CCNA2 were independent predictors for overall survival in patients with ovarian cancer. To the best of our knowledge, this is the first study to demonstrated that miR‑508‑3p suppressed ovarian cancer development by directly targeting CCNA2 and MMP7. The results of this study suggested the potential value of miR‑508‑3p and CCNA2 as prognostic indicators and therapeutics for ovarian cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。