Profound Tissue Specificity in Proliferation Control Underlies Cancer Drivers and Aneuploidy Patterns

增殖控制中显著的组织特异性是癌症驱动因素和非整倍体模式的基础

阅读:4
作者:Laura Magill Sack, Teresa Davoli, Mamie Z Li, Yuyang Li, Qikai Xu, Kamila Naxerova, Eric C Wooten, Ronald J Bernardi, Timothy D Martin, Ting Chen, Yumei Leng, Anthony C Liang, Kathleen A Scorsone, Thomas F Westbrook, Kwok-Kin Wong, Stephen J Elledge

Abstract

Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。