Colloidal Capsules Assembled from Gold Nanoparticles Using Small-Molecule Hydrophobic Cross-linkers

利用小分子疏水交联剂组装金纳米粒子胶体胶囊

阅读:9
作者:Yijia Zhang, Wafa Abidi, Jacob M Berlin

Abstract

Colloidal capsules (or colloidosomes) have been studied for various applications such as therapeutic agent encapsulation, photothermal therapy, imaging, and energy storage. Emulsion-based synthesis is the most common approach for preparing colloidal capsules as it is relatively straightforward and scalable. However, while the initial formation requires only introducing the colloidal subunits into an emulsion and letting them assemble at the interface, a second step is required in order to prepare stable, covalently linked colloidal capsules, and preparing submicron colloidal capsules is quite challenging. Here, we describe a simple and quick one-step method to synthesize covalently linked, stable nanoscale colloidal capsules consisting of gold nanoparticles (NPs) (AuNP) and thiol-containing cross-linkers. Gold nanoparticle capsules (AuNCs) were formed by coating emulsion droplets containing thiol-containing cross-linkers with citrate-stabilized AuNPs. The physicochemical properties of the colloidal capsules can be tailored by changing the building blocks. In order to demonstrate this, colloidal capsules were assembled from AuNPs ranging from 5 to 20 nm in size. The use of the larger 20 nm starting particles resulted in AuNCs with a sufficiently pronounced red shift for λmax to be suitable for biological photothermal applications, where use of a near-infrared laser is strongly preferred. The AuNCs were found to be biocompatible and stable in cell culture conditions and to provide moderate heating. This demonstrates the modularity of the synthesis and the potential advantages of a one-step synthesis to prepare nanoscale gold colloidal capsules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。