Growth Hormone Pulses and Liver Gene Expression Are Differentially Regulated by the Circadian Clock Gene Bmal1

生长激素脉冲和肝脏基因表达受昼夜节律基因 Bmal1 的差异调控

阅读:7
作者:Erica L Schoeller, Karen J Tonsfeldt, McKenna Sinkovich, Rujing Shi, Pamela L Mellon

Abstract

In this study, we found that loss of the circadian clock gene Bmal1 causes disruptions throughout the growth hormone (GH) axis, from hepatic gene expression to production of urinary pheromones and pheromone-dependent behavior. First, we show that Bmal1 knockout (KO) males elicit reduced aggressive responses from wild-type (WT) males and secrete lower levels of major urinary proteins (MUPs); however, we also found that a liver-specific KO of Bmal1 (liver-Bmal1-KO) produces a similar reduction in MUP secretion without a defect in aggressive behavior, indicating that the decrease in elicited aggression arises from another factor. We then shifted our investigation to determine the cause of MUP dysregulation in Bmal1 KO animals. Because the pulse pattern of GH drives sexually dimorphic expression of hepatic genes including MUPs, we examined GH pulsatility. We found that Bmal1 KO males have a female-like pattern of GH release, whereas liver-Bmal1-KO mice are not significantly different from either WT or Bmal1 KO. Since differential patterns of GH release regulate the transcription of many sexually dimorphic genes in the liver, we then examined hepatic gene transcription in Bmal1 KO and liver-Bmal1-KO mice. We found that while some female-predominant genes increase in the Bmal1 KO, there was no decrease in male-predominant genes, and little change in the liver-Bmal1-KO. We also found disrupted serum insulin growth factor 1 (IGF-1) and liver Igf1 messenger RNA in the Bmal1 KO mice, which may underlie the disrupted GH release. Overall, our findings differentiate between GH-pulse-driven and circadian-driven effects on hepatic genes, and the functional consequences of altered GH pulsatility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。