Solid optical tissue phantom tools based on upconverting nanoparticles for biomedical applications

基于上转换纳米粒子的固体光学组织幻像工具,可用于生物医学应用

阅读:6
作者:Gokhan Dumlupinar, Sanathana Konugolu Venkata Sekar, Claudia Nunzia Guadagno, Jean S Matias, Pranav Lanka, Chris K W Kho, Stefan Andersson-Engels

Aim

The study aims to provide a well-characterized UCNP-based solid phantom recipe and set of phantom tools to address a wide range of UCNP-based biophotonics applications. Approach: A solid phantom recipe based on silicone matrix was developed to manufacture UCNP-based phantoms. A lab built UCNP imaging system was used to characterize upconverted fluorescence emission of phantoms for linearity, homogeneity, and long-term stability. A photon time-of-flight spectroscopy technique was used to characterize the optical properties of the phantoms.

Conclusions

A first-of-its-kind UCNP-based solid phantom recipe was developed, and four types of UCNP phantom tools to explore biophotonics applications were presented. The UCNP phantoms exhibited a linear behavior with dosage and were stable over time. An example case showed the potential use of the phantom for deep tissue imaging applications. With recent advance in the use of UCNPs for biophotonics, we believe our recipe and tools will play a pivotal role in the growth of the UCNPs for biophotonics applications.

Results

In total, 24 phantoms classified into 4 types, namely homogeneous, multilayer, inclusion, and base phantoms, were manufactured. The phantoms exhibit linear behavior over the dosage range of UCNPs. The phantoms were found to be stable over a limited observed period of 4 months with a coefficient of variation of <4%<4%<math><mrow><mo><</mo> <mn>4</mn> <mo>%</mo></mrow> </math> . The deep tissue imaging case showed that increasing the thickness of tissue reduced the UCNP emission. Conclusions: A first-of-its-kind UCNP-based solid phantom recipe was developed, and four types of UCNP phantom tools to explore biophotonics applications were presented. The UCNP phantoms exhibited a linear behavior with dosage and were stable over time. An example case showed the potential use of the phantom for deep tissue imaging applications. With recent advance in the use of UCNPs for biophotonics, we believe our recipe and tools will play a pivotal role in the growth of the UCNPs for biophotonics applications.

Significance

Phantoms play a critical role in the development of biophotonics techniques. There is a lack of novel phantom tools in the emerging field of upconverting nanoparticles (UCNPs) for biophotonics application. This work provides a range of UCNP-based phantom tools and a manufacturing recipe to bridge the gap and accelerate the development of UCNP-based biophotonics applications. Aim: The study aims to provide a well-characterized UCNP-based solid phantom recipe and set of phantom tools to address a wide range of UCNP-based biophotonics applications. Approach: A solid phantom recipe based on silicone matrix was developed to manufacture UCNP-based phantoms. A lab built UCNP imaging system was used to characterize upconverted fluorescence emission of phantoms for linearity, homogeneity, and long-term stability. A photon time-of-flight spectroscopy technique was used to characterize the optical properties of the phantoms. Results: In total, 24 phantoms classified into 4 types, namely homogeneous, multilayer, inclusion, and base phantoms, were manufactured. The phantoms exhibit linear behavior over the dosage range of UCNPs. The phantoms were found to be stable over a limited observed period of 4 months with a coefficient of variation of <4%<4%<math><mrow><mo><</mo> <mn>4</mn> <mo>%</mo></mrow> </math> . The deep tissue imaging case showed that increasing the thickness of tissue reduced the UCNP emission. Conclusions: A first-of-its-kind UCNP-based solid phantom recipe was developed, and four types of UCNP phantom tools to explore biophotonics applications were presented. The UCNP phantoms exhibited a linear behavior with dosage and were stable over time. An example case showed the potential use of the phantom for deep tissue imaging applications. With recent advance in the use of UCNPs for biophotonics, we believe our recipe and tools will play a pivotal role in the growth of the UCNPs for biophotonics applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。