Multiple integrin ligands provide a highly adhesive and osteoinductive surface that improves selective cell retention technology

多种整合素配体提供高粘附性和骨诱导性表面,从而改善选择性细胞保留技术

阅读:6
作者:Keyu Luo, Xiaoliang Gao, Yuan Gao, Yan Li, Moyuan Deng, Jiulin Tan, Jing Gou, Chuan Liu, Ce Dou, Zhilin Li, Zehua Zhang, Jianzhong Xu, Fei Luo

Significance

Selective cell retention technology (SCR) has been utilized in clinical settings to manufacture bioactive bone grafts. Specifically, demineralized bone matrix (DBM) is a widely-used SCR clinical biomaterial but it displays poor adhesion performance and osteoinduction. Improvements of the DBM that promote cell adhesion and osteoinduction will benefit SCR-prepared implants. In this work, we developed a novel peptide that complements the DBM with a functionalized surface of multiple integrin ligands, which are corresponding to integrin subtypes available on human bone marrow-derived mesenchymal stem cells (MSCs). Our results indicate this novel functionalized bioscaffold greatly increases SCR-mediated MSC adhesion and in vivo osteogenesis. Overall, this novel material has promising SCR applications and may likely provide highly bioactive bone implants in clinical settings.

Statement of significance

Selective cell retention technology (SCR) has been utilized in clinical settings to manufacture bioactive bone grafts. Specifically, demineralized bone matrix (DBM) is a widely-used SCR clinical biomaterial but it displays poor adhesion performance and osteoinduction. Improvements of the DBM that promote cell adhesion and osteoinduction will benefit SCR-prepared implants. In this work, we developed a novel peptide that complements the DBM with a functionalized surface of multiple integrin ligands, which are corresponding to integrin subtypes available on human bone marrow-derived mesenchymal stem cells (MSCs). Our results indicate this novel functionalized bioscaffold greatly increases SCR-mediated MSC adhesion and in vivo osteogenesis. Overall, this novel material has promising SCR applications and may likely provide highly bioactive bone implants in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。