Acid ceramidase inhibition ameliorates α-synuclein accumulation upon loss of GBA1 function

酸性神经酰胺酶抑制可改善 GBA1 功能丧失后的 α-突触核蛋白积累

阅读:5
作者:Myung Jong Kim, Sohee Jeon, Lena F Burbulla, Dimitri Krainc

Abstract

GBA1 encodes the lysosomal enzyme β-glucocerebrosidase (GCase) which converts glucosylceramide into ceramide and glucose. Mutations in GBA1 lead to Gaucher's disease and are a major risk factor for Parkinson's disease (PD) and Dementia with Lewy bodies (DLB), synucleinopathies characterized by accumulation of intracellular α-synuclein. In this study, we examined whether decreased ceramide that is observed in GCase-deficient cells contributes to α-synuclein accumulation. We demonstrated that deficiency of GCase leads to a reduction of C18-ceramide species and altered intracellular localization of Rab8a, a small GTPase implicated in secretory autophagy, that contributed to impaired secretion of α-synuclein and accumulation of intracellular α-synuclein. This secretory defect was rescued by exogenous C18-ceramide or chemical inhibition of lysosomal enzyme acid ceramidase that converts lysosomal ceramide into sphingosine. Inhibition of acid ceramidase by carmofur resulted in increased ceramide levels and decreased glucosylsphingosine levels in GCase-deficient cells, and also reduced oxidized α-synuclein and levels of ubiquitinated proteins in GBA1-PD patient-derived dopaminergic neurons. Together, these results suggest that decreased ceramide generation via the catabolic lysosomal salvage pathway in GCase mutant cells contributes to α-synuclein accumulation, potentially due to impaired secretory autophagy. We thus propose that acid ceramidase inhibition which restores ceramide levels may be a potential therapeutic strategy to target synucleinopathies linked to GBA1 mutations including PD and DLB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。