Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines

燕麦-玉米附加系中玉米染色体的转录和表观遗传适应

阅读:4
作者:Zhaobin Dong, Juan Yu, Hui Li, Wei Huang, Ling Xu, Yue Zhao, Tao Zhang, Wenying Xu, Jiming Jiang, Zhen Su, Weiwei Jin

Abstract

By putting heterologous genomic regulatory systems into contact, chromosome addition lines derived from interspecific or intergeneric crosses allow the investigation of transcriptional regulation in new genomic environments. Here, we report the transcriptional and epigenetic adaptation of stably inherited alien maize chromosomes in two oat-maize addition (OMA) lines. We found that the majority of maize genes displayed maize-specific transcription in the oat genomic environment. Nevertheless, a quarter of the expressed genes encoded by the two maize chromosomes were differentially expressed genes (DEGs). Notably, highly conserved orthologs were more severely differentially expressed in OMAs than less conserved orthologs. Additionally, syntenic genes and highly abundant genes were over-represented among DEGs. Gene suppression was more common than activation among the DEGs; however, the genes in the former maize pericentromere, which expanded to become the new centromere in OMAs, were activated. Histone modifications (H3K4me3, H3K9ac and H3K27me3) were consistent with these transcriptome results. We expect that cis regulation is responsible for unchanged expression in OMA versus maize; and trans regulation is the predominant mechanism behind DEGs. The genome interaction identified here reveals the important consequences of interspecific/intergeneric crosses and potential mechanisms of plant evolution when genomic environments interact.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。