IFN- α-2b Reduces Postoperative Arthrofibrosis in Rats by Inhibiting Fibroblast Proliferation and Migration through STAT1/p21 Signaling Pathway

IFN-α-2b通过STAT1/p21信号通路抑制成纤维细胞增殖和迁移减轻大鼠术后关节纤维化

阅读:3
作者:Zhendong Liu, Zhehao Fan, Rui Wang, Xiaolei Li, Hui Chen, Jingcheng Wang

Conclusion

IFN-α-2b can reduce surgery-induced arthrofibrosis by inhibiting fibroblast proliferation and migration, which may be related to the regulation of STAT1/p21 signaling pathway.

Methods

The rat model of arthrofibrosis was established and treated with different concentrations of drugs. Knee specimens were collected for histological and immunohistochemical staining to observe the effect of IFN-α-2b on arthrofibrosis in rats. The biological information was further mined according to the database data, and the possible regulatory mechanism of IFN-α-2b on fibroblasts was analyzed. The inhibitory effect of IFN-α-2b on fibroblast proliferation and migration in vitro was detected by cell counting kit-8 (CCK-8), immunofluorescence analysis, cell cycle test, EdU assay, wound healing test, and Transwell method, and the analysis

Objective

To investigate the effect of IFN-α-2b in preventing postoperative arthrofibrosis in rats, its antiproliferation effect on fibroblasts in vitro, and its molecular mechanism.

Results

The test results of rat knee joint specimens showed that IFN-α-2b significantly inhibited the degree of fibrosis after knee joint surgery, the number of fibroblasts in the operation area was less than that of the control group, and the expression of collagen and proliferation-related proteins decreased. In vitro experimental results show that IFN-α-2b can inhibit the proliferation and migration of fibroblasts. According to the results of database analysis, it is suggested that the STAT1/P21 pathway may be involved, and it has been verified and confirmed by Western blotting and other related methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。