Functional and structural investigation of a broadly neutralizing SARS-CoV-2 antibody

广谱中和 SARS-CoV-2 抗体的功能和结构研究

阅读:4
作者:Yi-Hsuan Chang, Min-Feng Hsu, Wei-Nan Chen, Min-Hao Wu, Wye-Lup Kong, Mei-Yeh Jade Lu, Chih-Heng Huang, Fang-Ju Chang, Lan-Yi Chang, Ho-Yang Tsai, Chao-Ping Tung, Jou-Hui Yu, Yali Kuo, Yu-Chi Chou, Li-Yang Bai, Yuan-Chih Chang, An-Yu Chen, Cheng-Cheung Chen, Yi-Hua Chen, Chun-Che Liao, Chih-Shin Cha

Abstract

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。