p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells

PI3K 的 p110α 是成年肌肉卫星细胞退出静止状态的必要和充分条件

阅读:5
作者:Gang Wang, Han Zhu, Chenghao Situ, Lifang Han, Youqian Yu, Tom H Cheung, Kai Liu, Zhenguo Wu

Abstract

Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon injury, MuSCs exit quiescence in vivo to become activated, re-enter the cell cycle to proliferate, and differentiate to repair the damaged muscles. It remains unclear which extrinsic cues and intrinsic signaling pathways regulate quiescence exit during MuSC activation. Here, we demonstrated that inducible MuSC-specific deletion of p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K), rendered MuSCs unable to exit quiescence, resulting in severely impaired MuSC proliferation and muscle regeneration. Genetic reactivation of mTORC1, or knockdown of FoxOs, in p110α-null MuSCs partially rescued the above defects, making them key effectors downstream of PI3K in regulating quiescence exit. c-Jun was found to be a key transcriptional target of the PI3K/mTORC1 signaling axis essential for MuSC quiescence exit. Moreover, induction of a constitutively active PI3K in quiescent MuSCs resulted in spontaneous MuSC activation in uninjured muscles and subsequent depletion of the MuSC pool. Thus, PI3K-p110α is both necessary and sufficient for MuSCs to exit quiescence in response to activating signals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。