Receptor tyrosine kinase expression in high-grade gliomas before and after chemoradiotherapy

放化疗前后高级别胶质瘤受体酪氨酸激酶的表达

阅读:4
作者:Kuanyu Wang, Ruoyu Huang, Chenxing Wu, Guanzhang Li, Zheng Zhao, Huimin Hu, Yanwei Liu

Abstract

Glioma is the most common type of malignant brain tumor, and is characterized by invasive growth and chemoradiotherapy resistance. The following Cancer Genome Atlas mutation subtypes were identified in initial high-grade gliomas and recurrent gliomas treated by chemoradiotherapy: Isocitrate dehydrogenase 1/2 (IDH1/2) mutation, epidermal growth factor receptor variant III (EGFRvIII) mutation, tumor protein P53 mutation, PTEN mutation, O6-methylguanine-DNA methyltransferase promoter methylation and telomerase reverse transcriptase (TERT) mutation. The expression profile of 58 receptor tyrosine kinases (RTKs) were also examined. It was revealed that the proneural tumor subtype and IDH1/2 mutation are more frequent in recurrent tumors compared with initial tumors. Lower frequencies of the classical subtype, EGFRvIII mutation and TERT mutation were identified in recurrent tumors. A set of six RTK genes in which the level of expression was influenced by chemoradiotherapy was identified. Survival analysis revealed that the expression of several RTKs, including apoptosis-associated tyrosine kinase, fibroblast growth factor receptor 1 and insulin-like growth factor 1 receptor (IGF1R), was associated with patient survival. The stimulation of glioma cells by IGF1 in vitro was found to decreased the viability of the cells following treatment with temozolomide (TMZ). In addition, the expression level of IGF1R was increased in glioma cells treated with TMZ. These data suggest that altered RTK expression levels may influence the sensitivity of glioma to chemoradiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。