Evaluation of the Inhibitory Effects of Genipin on the Fluoxetine-Induced Invasive and Metastatic Model in Human HepG2 Cells

京尼平对氟西汀诱导的人HepG2细胞侵袭转移模型的抑制作用评价

阅读:5
作者:Yu-Syuan Tian, Kuan-Chou Chen, Nor Diana Zulkefli, Rida S Maner, Chiu-Lan Hsieh

Abstract

Metastasis of hepatocellular carcinoma (HCC) is usually unrecognized before any pathological examination, resulting in time-taking treatment and poor prognosis. As a consequence, HCC patients usually show symptoms of depression. In order to suppress such psychiatric disorders and to facilitate better treatment outcome, antidepressants are prescribed. Up to present, information about the effect of antidepressants on HCC is still lacking. Therefore, we chose fluoxetine (FXT), one of the top five psychiatric prescriptions in the United States, together with the HepG2 cell model to explore its effect on HCC. Our study found that FXT (5 µM) increased the migratory distance of HepG2 cells by a factor of nearly 1.7 compared to control. In addition, our study also investigated the effect of genipin (GNP), which is an active compound from Gardenia jasminoides Ellis fruit (family Rubiaceae), on the FXT-induced HepG2 cells. Our study found that 30 and 60 µM GNP reduced the migratory distance by 42% and 74% respectively, compared to FXT treatment alone. Furthermore, we also found that FXT upregulated matrix metalloproteinases (MMPs) genes, increased the protein expression of MMPs, urokinase-type plasminogen activator (uPA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), activator protein 1 (AP-1), phosphorylated mitogen-activated protein kinase (P-p38), phosphorylated protein kinase B (P-Akt), downregulated tissue inhibitor metalloproteinases (TIMPs) genes and decreased the TIMPs proteins expression whereas, GNP fully counteracted the action of FXT. Conclusively, this study has provided valuable information regarding the possible molecular mechanisms through which FXT affects the metastatic invasiveness of HepG2 cells and evidences to support that GNP counteracts such effect via the same molecular mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。