The Regulation of the AMPK/mTOR Axis Mitigates Tendon Stem/Progenitor Cell Senescence and Delays Tendon Aging

AMPK/mTOR 轴的调节可减轻肌腱干细胞/祖细胞衰老并延缓肌腱老化

阅读:3
作者:Guangchun Dai, Yingjuan Li, Ming Zhang, Panpan Lu, Yuanwei Zhang, Hao Wang, Liu Shi, Mumin Cao, Renwang Shen, Yunfeng Rui

Abstract

Age-related tendon disorders are closely linked with tendon stem/progenitor cell (TSPC) senescence. However, the underlying mechanisms of TSPC senescence and promising therapeutic strategies for rejuvenation of TSPC senescence remain unclear. In this study, the senescent state of TSPCs increased with age. It was also verified that the AMPK inhibition/mTOR activation is correlated with the senescent state of TSPCs. Furthermore, a low dose of metformin mitigated TSPC senescence and restored senescence-related functions, including proliferation, colony-forming ability, migration ability and tenogenic differentiation ability at the early stage of aging. The protective effects of metformin on TSPCs were regulated through the AMPK/mTOR axis. An in vivo study showed that metformin treatment postpones tendon aging and enhances AMPK phosphorylation but reduces mTOR phosphorylation in a natural aging rat model. Our study revealed new insight and mechanistic exploration of TSPC senescence and proposed a novel therapeutic treatment for age-related tendon disorders by targeting the AMPK/mTOR axis at the early stage of aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。