A 3D Tissue-wide Digital Imaging Pipeline for Quantitation of Secreted Molecules Shows Absence of CXCL12 Gradients in Bone Marrow

用于定量分泌分子的 3D 组织范围数字成像管道显示骨髓中不存在 CXCL12 梯度

阅读:5
作者:Leo Kunz, Timm Schroeder

Abstract

Technological limitations have hampered understanding of how individual molecules, including putative stem cell regulators, are distributed throughout tissues and stem cell niches. Here, we report adaptation of the proximity ligation assay (PLA) for large-volume, in situ imaging of individual proteins with multiple additional fluorescent channels with integrated 3D quantification strategies and software. Using this platform, we quantified the bone marrow (BM) distribution of individual CXCL12 chemokine proteins, both before and after their depletion by granulocyte-colony stimulating factor (G-CSF) treatment. We found ubiquitous CXCL12 distributions with local enrichments but no long-range gradients, in contrast to current assumptions about how CXCL12 controls migration of hematopoietic stem and progenitor cells (HSPCs) within BM. This pipeline for discrete digital quantitative, large-volume, multicolor imaging, with up to single-molecule sensitivity, may be broadly applied to any antibody epitope and tissue, enabling further insights into molecular organization of tissues and cellular interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。