Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration

CCL5释放纤维蛋白凝胶对椎间盘再生的影响

阅读:9
作者:Zhiyu Zhou, Stephan Zeiter, Tanja Schmid, Daisuke Sakai, James C Iatridis, Guangqian Zhou, R Geoff Richards, Mauro Alini, Sibylle Grad, Zhen Li

Conclusions

CCL5 has a chemotactic effect on AF cells in vitro, but no ex vivo or in vivo regenerative effect when delivered within fibrin gel. Further study with a stronger chemotactic agent and/or an alternate biomaterial that is more conductive of cell migration is warranted.

Objective

To explore if chemokine (C-C motif) ligand 5 (CCL5) delivery could recruit annulus fibrosus (AF) cells to the injury sites and facilitate the repair of ruptured AF. Design: The effects of CCL5 on bovine AF cells in vitro were tested by transwell assay and quantitative real-time polymerase chain reaction. Fibrin gel containing CCL5 was used to treat annulotomized bovine caudal discs cultured under dynamic loading conditions. After 14 days of loading, the samples were collected for histological examination. A pilot animal study was performed using sheep cervical discs to investigate the effect of fibrin gel encapsulated with CCL5 for the treatment of ruptured AF. After 14 weeks, the animals were sacrificed, and the discs were scanned with magnetic resonance imaging before histopathological examination.

Results

CCL5 showed a chemotactic effect on AF cells in a dose-dependent manner. AF cells cultured with CCL5 in vitro did not show any change of the gene expression of CCL5 receptors, catabolic and proinflammatory markers. In vitro release study showed that CCL5 exhibited sustained release from the fibrin gel into the culture media; however, in the organ culture study CCL5 did not stimulate homing of AF cells toward the defect sites. The pilot animal study did not show any repair effect of CCL5. Conclusions: CCL5 has a chemotactic effect on AF cells in vitro, but no ex vivo or in vivo regenerative effect when delivered within fibrin gel. Further study with a stronger chemotactic agent and/or an alternate biomaterial that is more conductive of cell migration is warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。