Apatinib induced ferroptosis by lipid peroxidation in gastric cancer

阿帕替尼通过脂质过氧化诱导胃癌铁死亡

阅读:5
作者:Liying Zhao #, Yanmei Peng #, Sixiao He, Ru Li, Ziqing Wang, Junhao Huang, Xuetao Lei, Guoxin Li, Qiang Ma

Background

Apatinib, a competitive inhibitor of VEGFR2, has anti-angiogenesis and anticancer activities through different mechanisms, but it still cannot fully explain the drug efficacy of apatinib. Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in cancer biology, however, the exact role of ferroptosis in apatinib-mediating anticancer treatment are still not clear.

Conclusions

In summary, we show that apatinib could induce the lipid peroxidation through GPX4 mediated by SREBP-1a, then negatively regulate the GC cell, even the multi-drug-resistant GC cell, ferroptosis.

Methods

The effects of (1S, 3R)-RSL3 and apatinib were evaluated in different GC cell lines and in normal human gastric epithelial cells. Further, the effects of apatinib and inhibition of antioxidant defense enzyme glutathione peroxidase (GPX4) on cell viability, cell death, glutathione (GSH) levels, lipid ROS production, cellular malondialdehyde (MDA) levels and protein expression were evaluated in vitro as well as in a mouse tumor xenograft model. The expression level of GPX4 in GC tissues and paracancerous tissues was measured by immunohistochemistry.

Results

(1S, 3R)-RSL3 selectively killed GC cells, but not normal cells. Apatinib induced ferroptosis in GC cells by decreasing cellular GSH levels and increasing lipid peroxidation levels. This effect was blocked by co-incubation with ferrostatin-1, liproxstatin-1, GSH, or vitamin E. Further investigation revealed that apatinib down-regulated GPX4 expression via inhibition of the transcription factors Sterol regulatory element-binding protein-1a (SREBP-1a). Besides, we found that multi-drug resistant GC cells were vulnerable to apatinib-induced GPX4 inhibition. Conclusions: In summary, we show that apatinib could induce the lipid peroxidation through GPX4 mediated by SREBP-1a, then negatively regulate the GC cell, even the multi-drug-resistant GC cell, ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。