Long non-coding RNA SSTR5-AS1 facilitates gemcitabine resistance via stabilizing NONO in gallbladder carcinoma

长链非编码RNA SSTR5-AS1通过稳定胆囊癌中的NONO促进吉西他滨耐药性

阅读:8
作者:Zhuowei Xue, Bikang Yang, Qinyang Xu, Xiaolu Zhu, Guangyi Qin

Abstract

Gallbladder carcinoma (GBC) is the most aggressive carcinoma of the biliary tract, effective chemotherapy was critical for the patients with unresectable GBC. However, chemotherapy resistance is still problematic for clinicians. Here, we identified a specific long non-coding RNA, SSTR5-AS1, in GBC patient that facilitates gemcitabine resistance. SSTR5-AS1 is significantly increased in GBC samples and cell lines, especially in gemcitabine-resistant cell lines, and higher SSTR5-AS1 expression was correlated with poorer overall survival rate in GBC patients. Our data revealed that upregulated SSTR5-AS1 facilitates gemcitabine resistance via inhibiting apoptosis. Knockdown of SSTR5-AS1 sensitized drug resistant GBC cells to gemcitabine in vitro and strongly inhibited xenografts formed by drug resistant GBC cells in vivo. Moreover, we found via streptavidin pull down assay that NONO specifically binds to sense sequence of SSTR5-AS1 and prevented proteasome mediated NONO degradation, which resulted in increased NONO protein level without affecting the transcription of NONO. NONO functions as the downstream effector of SSTR5-AS1 and is required for SSTR5-AS1 mediated gemcitabine resistance. Collectively, our data provided novel insights into lncRNA-mediated chemotherapy resistance and suggested a novel therapeutic target to improve chemotherapy strategies for unresectable GBC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。