Use of Physiologically Based Kinetic Modeling-Facilitated Reverse Dosimetry to Predict In Vivo Acute Toxicity of Tetrodotoxin in Rodents

使用基于生理的动力学建模辅助逆向剂量法预测河豚毒素对啮齿动物的体内急性毒性

阅读:7
作者:Annelies Noorlander, Mengying Zhang, Bennard van Ravenzwaay, Ivonne M C M Rietjens

Abstract

In this study, the ability of a new in vitro/in silico quantitative in vitro-in vivo extrapolation (QIVIVE) methodology was assessed to predict the in vivo neurotoxicity of tetrodotoxin (TTX) in rodents. In vitro concentration-response data of TTX obtained in a multielectrode array assay with primary rat neonatal cortical cells and in an effect study with mouse neuro-2a cells were quantitatively extrapolated into in vivo dose-response data, using newly developed physiologically based kinetic (PBK) models for TTX in rats and mice. Incorporating a kidney compartment accounting for active renal excretion in the PBK models proved to be essential for its performance. To evaluate the predictions, QIVIVE-derived dose-response data were compared with in vivo data on neurotoxicity in rats and mice upon oral and parenteral dosing. The results revealed that for both rats and mice the predicted dose-response data matched the data from available in vivo studies well. It is concluded that PBK modeling-based reserve dosimetry of in vitro TTX effect data can adequately predict the in vivo neurotoxicity of TTX in rodents, providing a novel proof-of-principle for this methodology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。