Human umbilical cord mesenchymal stem cell-derived exosomal microRNA-148a-3p inhibits neointimal hyperplasia by targeting Serpine1

人脐带间充质干细胞来源的外泌体 microRNA-148a-3p 通过靶向 Serpine1 抑制内膜增生

阅读:9
作者:Xiaoyu Zhang, Yu Zhou, Yanchen Ye, Ridong Wu, Wen Li, Chen Yao, Shenming Wang

Background

Restenosis is inevitable when patients undergo percutaneous transluminal angioplasty due to neointimal hyperplasia (NIH). Human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exos) have been studied in the field of cardiovascular diseases. However, the effects and mechanisms of hucMSC-Exos on NIH are unclear. We aimed to investigate whether MSC-Exos regulate vascular smooth muscle cell (VSMC) functions to inhibit NIH and explore the underlying mechanisms.

Conclusions

We found that hucMSC-Exos inhibited NIH in a mouse carotid artery ligation model and that the inhibitory effects on VSMC phenotypic switching and migration were mediated by delivery of miR-148a-3p to VSMCs to target Serpine1.

Methods

HucMSCs and mouse VSMCs were isolated and characterized by flow cytometry and immunofluorescence. HucMSC-Exos were identified by transmission electron microscopy, nanoparticle tracking analysis and western blots. Exosomes (Exos) were intravenously injected into mice with left common carotid artery ligation, and their effects on NIH were assessed by haematoxylin and eosin (H&E) and immunohistochemistry staining. The effects of hucMSC-Exos on VSMCs were evaluated by Cell Counting Kit-8, scratch wound, Transwell and Western blot assays. MicroRNA sequencing data in the Gene Expression Omnibus and mRNA sequencing

Results

Primary hucMSCs, VSMCs and hucMSC-Exos were isolated and characterized. Administration of hucMSC-Exos suppressed NIH after artery ligation. H&E and immunohistochemistry results showed that hucMSC-Exos decreased the intima and media area and intima/media ratio, increased the contractile phenotype protein SM22a in the media layer and downregulated Serpine1 expression in the carotid artery. Exos were ingested by VSMCs, which inhibited migration and upregulated SM22a expression by suppressing Serpine1 expression in vitro. MiR-148a-3p was enriched in hucMSC-Exos and repressed Serpine1 by targeting its 3' untranslated region. Moreover, exosomal miR-148a-3p suppressed VSMC phenotypic switching and migration by targeting Serpine1. Conclusions: We found that hucMSC-Exos inhibited NIH in a mouse carotid artery ligation model and that the inhibitory effects on VSMC phenotypic switching and migration were mediated by delivery of miR-148a-3p to VSMCs to target Serpine1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。